
This paper is included in the Proceedings of the
28th USENIX Security Symposium.

August 14–16, 2019 • Santa Clara, CA, USA

978-1-939133-06-9

Open access to the Proceedings of the
28th USENIX Security Symposium

is sponsored by USENIX.

Grimoire: Synthesizing Structure while Fuzzing
Tim Blazytko, Cornelius Aschermann, Moritz Schlögel, Ali Abbasi, Sergej Schumilo,

Simon Wörner, and Thorsten Holz, Ruhr-Universität Bochum

https://www.usenix.org/conference/usenixsecurity19/presentation/blazytko

GRIMOIRE: Synthesizing Structure while Fuzzing

Tim Blazytko, Cornelius Aschermann, Moritz Schlögel, Ali Abbasi,
Sergej Schumilo, Simon Wörner and Thorsten Holz

Ruhr-Universität Bochum, Germany

Abstract
In the past few years, fuzzing has received significant at-

tention from the research community. However, most of this
attention was directed towards programs without a dedicated
parsing stage. In such cases, fuzzers which leverage the input
structure of a program can achieve a significantly higher code
coverage compared to traditional fuzzing approaches. This
advancement in coverage is achieved by applying large-scale
mutations in the application’s input space. However, this
improvement comes at the cost of requiring expert domain
knowledge, as these fuzzers depend on structure input speci-
fications (e. g., grammars). Grammar inference, a technique
which can automatically generate such grammars for a given
program, can be used to address this shortcoming. Such tech-
niques usually infer a program’s grammar in a pre-processing
step and can miss important structures that are uncovered only
later during normal fuzzing.

In this paper, we present the design and implementation
of GRIMOIRE, a fully automated coverage-guided fuzzer
which works without any form of human interaction or pre-
configuration; yet, it is still able to efficiently test programs
that expect highly structured inputs. We achieve this by per-
forming large-scale mutations in the program input space
using grammar-like combinations to synthesize new highly
structured inputs without any pre-processing step. Our eval-
uation shows that GRIMOIRE outperforms other coverage-
guided fuzzers when fuzzing programs with highly structured
inputs. Furthermore, it improves upon existing grammar-
based coverage-guided fuzzers. Using GRIMOIRE, we iden-
tified 19 distinct memory corruption bugs in real-world pro-
grams and obtained 11 new CVEs.

1 Introduction

As the amount of software impacting the (digital) life of
nearly every citizen grows, effective and efficient testing
mechanisms for software become increasingly important. The
publication of the fuzzing framework AFL [65] and its suc-
cess at uncovering a huge number of bugs in highly relevant

software has spawned a large body of research on effective
feedback-based fuzzing. AFL and its derivatives have largely
conquered automated, dynamic software testing and are used
to uncover new security issues and bugs every day. However,
while great progress has been achieved in the field of fuzzing,
many hard cases still require manual user interaction to gen-
erate satisfying test coverage. To make fuzzing available to
more programmers and thus scale it to more and more target
programs, the amount of expert knowledge that is required to
effectively fuzz should be reduced to a minimum. Therefore,
it is an important goal for fuzzing research to develop fuzzing
techniques that require less user interaction and, in particular,
less domain knowledge to enable more automated software
testing.

Structured Input Languages. One common challenge for
current fuzzing techniques are programs which process highly
structured input languages such as interpreters, compilers,
text-based network protocols or markup languages. Typically,
such inputs are consumed by the program in two stages: pars-
ing and semantic analysis. If parsing of the input fails, deeper
parts of the target program—containing the actual applica-
tion logic—fail to execute; hence, bugs hidden “deep” in the
code cannot be reached. Even advanced feedback fuzzers—
such as AFL—are typically unable to produce diverse sets
of syntactically valid inputs. This leads to an imbalance, as
these programs are part of the most relevant attack surface in
practice, yet are currently unable to be fuzzed effectively. A
prominent example are browsers, as they parse a multitude
of highly-structured inputs, ranging from XML or CSS to
JavaScript and SQL queries.

Previous approaches to address this problem are typi-
cally based on manually provided grammars or seed cor-
pora [2, 14, 45, 52]. On the downside, such methods require
human experts to (often manually) specify the grammar or
suitable seed corpora, which becomes next to impossible for
applications with undocumented or proprietary input specifi-
cations. An orthogonal line of work tries to utilize advanced
program analysis techniques to automatically infer grammars

USENIX Association 28th USENIX Security Symposium 1985

[4, 5, 25]. Typically performed as a pre-processing step, such
methods are used for generating a grammar that guides the
fuzzing process. However, since this grammar is treated as im-
mutable, no additional learning takes place during the actual
fuzzing run.

Our Approach. In this paper, we present a novel, fully au-
tomated method to fuzz programs with a highly structured
input language, without the need for any human expert or
domain knowledge. Our approach is based on two key obser-
vations: First, we can use code coverage feedback to automati-
cally infer structural properties of the input language. Second,
the precise and “correct” grammars generated by previous
approaches are actually unnecessary in practice: since fuzzers
have the virtue of high test case throughput, they can deal
with a significant amount of noise and imprecision. In fact, in
some programs (such as Boolector) with a rather diverse set
of input languages, the additional noise even benefits the fuzz
testing. In a similar vein, there are often program paths which
can only be accessed by inputs outside of the formal specifica-
tions, e. g., due to incomplete or imprecise implementations
or error handling code.

Instead of using a pre-processing step, our technique is
directly integrated in the fuzzing process itself. We propose a
set of generalizations and mutations that resemble the inner
workings of a grammar-based fuzzer, without the need for an
explicit grammar. Our generalization algorithm analyzes each
newly found input and tries to identify substrings of the input
which can be replaced or reused in other positions. Based on
this information, the mutation operators recombine fragments
from existing inputs. Overall, this results in synthesizing new,
structured inputs without prior knowledge of the underlying
specification.

We have implemented a prototype of the proposed ap-
proach in a tool called GRIMOIRE1. GRIMOIRE does not
need any specification of the input language and operates in
an automated manner without requiring human assistance;
in particular, without the need for a format specification or
seed corpus. Since our techniques make no assumption about
the program or its environment behavior, GRIMOIRE can be
easily applied to closed-source targets as well.

To demonstrate the practical feasibility of our approach,
we perform a series of experiments. In a first step, we select a
diverse set of programs for a comparative evaluation: we eval-
uate GRIMOIRE against other fuzzers on four scripting lan-
guage interpreters (mruby, PHP, Lua and JavaScriptCore),
a compiler (TCC), an assembler (NASM), a database (SQLite),
a parser (libxml) and an SMT solver (Boolector). Demon-
strating that our approach can be applied in many different
scenarios without requiring any kind of expert knowledge,
such as an input specification. The evaluation results show

1A grimoire is a magical book that recombines magical elements to
formulas. Furthermore, it has the same word stem as the Old French word
for grammar—namely, gramaire.

that our approach outperforms all existing coverage-guided
fuzzers; in the case of Boolector, GRIMOIRE finds up to
87% more coverage than the baseline (REDQUEEN). Sec-
ond, we evaluate GRIMOIRE against state-of-the-art grammar-
based fuzzers. We observe that in situations where an input
specification is available, it is advisable to use GRIMOIRE
in addition to a grammar fuzzer to further increase the test
coverage found by grammar fuzzers. Third, we evaluate GRI-
MOIRE against current state-of-the-art approaches that use
automatically inferred grammars for fuzzing and found that
we can significantly outperform such approaches. Overall,
GRIMOIRE found 19 distinct memory corruption bugs that
we manually verified. We responsibly disclosed all of them
to the vendors and obtained 11 CVEs. During our evalu-
ation, the next best fuzzer only found 5 of these bugs. In
fact, GRIMOIRE found more bugs than all five other fuzzers
combined.

Contributions. In summary, we make the following contri-
butions:

• We present the design, implementation and evaluation
of GRIMOIRE, an approach to fully automatically fuzz
highly structured formats with no human interaction.

• We show that even though GRIMOIRE is a binary-only
fuzzer that needs no seeds or grammar as input, it
still outperforms many fuzzers that make significantly
stronger assumptions (e. g., access to seeds, grammar
specifications and source code).

• We found and reported multiple bugs in various common
projects such as PHP, gnuplot and NASM.

2 Challenges in Fuzzing Structured Lan-
guages

In this section, we briefly summarize essential information
paramount to the understanding of our approach. To this
end, we provide an overview of different fuzzing approaches,
while focusing on their shortcomings and open challenges.
In particular, we describe those details of AFL (e. g., code
coverage) that are necessary to understand our approach. Ad-
ditionally, we explain how fuzzers explore the state space of
a program and how grammars aid the fuzzing process.

Generally speaking, fuzzing is a popular and efficient soft-
ware testing technique used to uncover bugs in applications.
Fuzzers typically operate by producing a large number of test
cases, some of which may trigger bugs. By closely moni-
toring the runtime execution of these test cases, fuzzers are
able to locate inputs causing faulty behavior. In an abstract
view, one can consider fuzzing as randomly exploring the
state space of the application. Typically, most totally ran-
dom inputs are rejected early by the target application and

1986 28th USENIX Security Symposium USENIX Association

do not visit interesting parts of the state space. Thus, in our
abstract view, the state space has interesting and uninteresting
regions. Efficient fuzzers somehow have to ensure that they
avoid uninteresting regions most of the time. Based on this
observation, we can divide fuzzers into three broad categories,
namely: (a) blind, (b) coverage-guided and (c) hybrid fuzzers,
as explained next.

2.1 Blind Fuzzing
The most simple form of a fuzzer is a program which gen-
erates a stream of random inputs and feeds it to the target
application. If the fuzzer generates inputs without considering
the internal behavior of the target application, it is typically
referred to as a blind fuzzer. Examples of blind fuzzers are
RADAMSA [29], PEACH [14], Sulley [45] and ZZUF [32].
To obtain new inputs, fuzzers traditionally can build on two
strategies: generation and mutation.

Fuzzers employing the former approach have to acquire
a specification, typically a grammar or model, of an appli-
cation’s expected input format. Then, a fuzzer can use the
format specification to be able to generate novel inputs in a
somewhat efficient way. Additionally, in some cases, a set of
valid inputs (a so-called corpus) might be required to aid the
generation process [46, 58].

On the other hand, fuzzers which employ a mutation-based
strategy require only an initial corpus of inputs, typically
referred to as seeds. Further test cases are generated by ran-
domly applying various mutations on initial seeds or novel
test cases found during fuzzing runs. Examples for common
mutators include bit flipping, splicing (i. e., recombining two
inputs) and repetitions [14, 29, 32]. We call these mutations
small-scale mutations, as they typically change small parts of
the program input.

Blind fuzzers suffer from one major drawback. They either
require an extensive corpus or a well-designed specification
of the input language to provide meaningful results. If a
program feature is not represented by either a seed or the
input language specification, a blind fuzzer is unlikely to
exercise it. In our abstract, state space-based view, this can be
understood as blindly searching the state space near the seed
inputs, while failing to explore interesting neighborhoods,
as illustrated in Figure 1(a). To address this limitation, the
concept of coverage-guided fuzzing was introduced.

2.2 Coverage-guided Fuzzing
Coverage-guided fuzzers employ lightweight program cover-
age measurements to trace how the execution path of the appli-
cation changes based on the provided input (e. g., by tracking
which basic blocks have been visited). These fuzzers use this
information to decide which input should be stored or dis-
carded to extend the corpus. Therefore, they are able to evolve
inputs that differ significantly from the original seed corpus

(a) Blind mutational fuzzers mostly
explore the state space near the seed
corpus. They often miss interesting
states (shaded area) unless the seeds
are good.

(b) Coverage guided fuzzers can
learn new inputs (arrows) close to ex-
isting seeds. However, they are often
unable to skip large gaps.

(c) Programs with highly structured
input formats typically have large
gaps in the state space. Current feed-
back and hybrid fuzzers have difficul-
ties finding other interesting islands
using local mutations.

(d) By introducing an input specifica-
tion, fuzzers can generate inputs in
interesting areas and perform large-
scale mutations that allow to jump
between islands of interesting states.

Figure 1: Different fuzzers exploring distinct areas in state space.

while at the same time exercising new program features. This
strategy allows to gradually explore the state of the program
as it uncovers new paths. This behavior is illustrated in Fig-
ure 1(b). The most prominent example of a coverage-guided
fuzzer is AFL [65]. Following the overwhelming success of
AFL, various more efficient coverage-guided fuzzers such as
ANGORA [12], QSYM [64], T-FUZZ [47] or REDQUEEN [3]
were proposed.

From a high-level point of view, all these AFL-style fuzzers
can be broken down into three different components: (i) the in-
put queue stores and schedules all inputs found so far, (ii) the
mutation operations produce new variants of scheduled inputs
and (iii) the global coverage map is used to determine whether
a new variant produced novel coverage (and thus should be
stored in the queue).

From a technical point of view, this maps to AFL as fol-
lows: Initially, AFL fills the input queue with the seed inputs.
Then, it runs in a continuous fuzzing loop, composed of the
following steps: (1) Pick an input from the input queue, then
(2) apply multiple mutation operations on it. After each muta-
tion, (3) execute the target application with the selected input.
If new coverage was triggered by the input, (4) save it back to
the queue. To determine whether new coverage was triggered,

USENIX Association 28th USENIX Security Symposium 1987

AFL compares the results of the execution with the values in
the global coverage map.

This global coverage map is filled as follows: AFL shares
a memory area of the same size as the global coverage map
with the fuzzing target. During execution, each transition
between two basic blocks is assigned a position inside this
shared memory. Every time the transition is triggered, the
corresponding entry (one byte) in the shared memory map is
incremented. To reduce overhead incurred by large program
traces, the shared coverage map has a fixed size (typically
216 bytes). While this might introduce collisions, empirical
evaluation has shown that the performance gains make up for
the loss in the precision [66].

After the target program terminates, AFL compares the
values in the shared map to all previous runs stored in the
global coverage map. To check if a new edge was executed,
AFL applies the so-called bucketing. During bucketing, each
entry in the shared map is rounded to a power of 2 (i. e., at
most a single bit is set in each entry). Then, a simple binary
operation is used to check if any new bits are present in the
shared map (but not the global map). If any new bit is present,
the input is stored in the queue. Furthermore, all new bits
are also set to 1 in the global coverage map. We distinguish
between new bits and new bytes. If a new bit is set to 1 in
a byte that was previously zero, we refer to it as a new byte.
Intuitively, a new byte corresponds to new coverage while a
new bit only illustrates that a known edge was triggered more
often (e. g., more loop iterations were observed).

Example 1. For example, consider some execution a while
after starting the fuzzer run for a program represented by
its Control-Flow Graph (CFG) in Figure 2 a©. Assume that
the fictive execution of an input causes a loop between B
and C to be executed 10 times. Hence, the shared map is
updated as shown in b©, reflecting the fact that edges A→
B and C → D were executed only once, while the edges B
→ C and C → B were encountered 10 (0b1010) times. In
c©, we illustrate the final bucketing step. Note how 0b1010

is put into the bucket 0b1000, while 0b0001 is moved into
the one identified by 0b0001. Finally, AFL checks whether
the values encountered in this run triggered unseen edges in
d©. To this end, we compare the shared map to the global

coverage map and update it accordingly (see e©), setting bits
set in the shared but not global coverage map. As visualized
in f©, a new bit was set for two entries, while a new byte
was found for one. This means that the edge between C→ D
was previously unseen, thus the input used for this example
triggered new coverage.

While coverage-guided fuzzers significantly improve upon
blind fuzzers, they can only learn from new coverage if they
are able to guess an input that triggers the new path in the
program. In certain cases, such as multi-byte magic values,
the probability of guessing an input necessary to trigger a
different path is highly unlikely. These kind of situations

occur if there is a significant gap between interesting areas in
the state space and existing mutations are unlikely to cross the
uninteresting gap. The program displayed in the Figure 1(b)
illustrates a case with only one large gap in the program
space. Thus, this program is well-suited for coverage-guided
fuzzing. However, current mutation-based coverage-guided
fuzzers struggle to explore the whole state space because
the island in the lower right is never reached. To overcome
this limitation, hybrid fuzzer were introduced; these combine
coverage-guided fuzzing with more in-depth program analysis
techniques.

2.3 Hybrid Fuzzing
Hybrid fuzzers typically combine coverage-guided fuzzing
with program analysis techniques such as symbolic execution,
concolic execution or taint tracking. As noted above, fast and
cheap fuzzing techniques can uncover the bulk of the easy-
to-reach code. However, they struggle to trigger program
paths that are highly unlikely. On the other hand, symbolic
or concolic execution does not move through the state space
randomly. Instead, these techniques use an SMT solver to
find inputs that trigger the desired behavior. Therefore, they
can cover hard-to-reach program locations. Still, as a con-
sequence of the precise search technique, they struggle to
explore large code regions due to significant overhead.

By combining fuzzing and reasoning-based techniques, one
can benefit from the strength of each individual technique,
while avoiding the drawbacks. Purely symbolic approaches
have proven difficult to scale. Therefore, most current tools
such as SAGE [21], DRILLER [54] or QSYM [64] use concolic
execution instead. This mostly avoids the state explosion
problem by limiting the symbolic execution to a single path.
To further reduce the computation cost, some fuzzers such
as VUZZER [50] and ANGORA [12] only use taint tracking.
Both approaches still allow to overcome the common multi-
byte magic value problem. However, they lose the ability to
explore behavior more globally.

While hybrid fuzzers can solve constraints over individual
values of the input, they are typically not efficient at solving
constraints on the overall structure of the input. Consider
target programs such as a script interpreter. To uncover a new
valid code path, the symbolic executor usually has to consider
a completely different path through the parsing stage. This
leads to a large number of very large gaps in the state space
as illustrated in Figure 1(c). Therefore, concolic execution or
taint tracking-based tools are unable to solve these constraints.
In purely symbolic execution-based approaches, this leads to
a massive state explosion.

2.4 Coverage-guided Grammar Fuzzing
Beside the problem of multi-byte magic values, there is an-
other issue which leads to large gaps between interesting

1988 28th USENIX Security Symposium USENIX Association

Figure 2: The process of tracing a path in a program and introducing new bits and bytes in the global coverage map.

parts of the state space: programs with structured input lan-
guages. Examples for such programs are interpreters, com-
pilers, databases and text-based Internet protocols. As men-
tioned earlier, current mutational blind and coverage-guided
as well as hybrid fuzzers cannot efficiently fuzz programs
with structured input languages. To overcome this issue, gen-
erational fuzzers (whether blind, coverage-guided or hybrid)
use a specification of the input language (often referred to as
a grammar) to generate valid inputs. Thereby, they reduce the
space of possible inputs to a subset that is much more likely
to trigger interesting states. Additionally, coverage-guided
grammar fuzzers can mutate inputs in this reduced subset by
using the provided grammar. We call these mutations large-
scale mutations since they modify large part of the input. This
behavior is illustrated in Figure 1(d).

Therefore, the performance of fuzzers can be increased
drastically by providing format specifications to the fuzzer, as
implemented in NAUTILUS [2] and AFLSMART [48]. These
specifications let the fuzzer spend more time exercising code
paths deep in the target application. Particularly, the fuzzer
is able to sensibly recombine inputs that trigger interesting
features in a way that has a good chance of triggering more
interesting behaviors.

Grammar fuzzers suffer from two major drawbacks. First,
they require human effort to provide precise format specifica-
tion. Second, if the specification is incomplete or inaccurate,
the fuzzer lacks the capability to address these shortcomings.
One can overcome these two drawbacks by automatically
inferring the specification (grammar).

2.5 Grammar Inference

Due to the impact of grammars on software testing, vari-
ous approaches have been developed that automatically can

generate input grammars for target programs. Bastani et
al. [5] introduced GLADE, which uses a modified version of
the target as a black-box oracle that tests if a given input is
syntactically valid. GLADE turns valid inputs into regular
expressions that generate (mostly) valid inputs. Then, these
regular expressions are turned into full grammars by trying
to introduce recursive replacement rules. In each step, the va-
lidity of the resulting grammar is tested using multiple oracle
queries. This approach has three significant drawbacks: First,
the inference process takes multiple hours for complex targets
such as scripting languages. Second, the user needs to provide
an automated testing oracle, which might not be trivial to pro-
duce. Third, in the context of fuzzing, the resulting grammars
are not well suited for fuzzing as our evaluation shows (see
Section 5.4 for details). Additionally, this approach requires
a pre-processing step before fuzzing starts in order to infer a
grammar from the input corpus.

Other approaches use the target application directly and
thus avoid the need to create an oracle. AUTOGRAM [34],
for instance, uses the original program and taint tracking to
infer grammars. It assumes that the functions that are called
during parsing reflect the non-terminals of the intended gram-
mar. Therefore, it does not work for recursive descent parsers.
PYGMALION [25] is based on simplified symbolic execution
of Python code to avoid the dependency on a set of good in-
puts. Similar to AUTOGRAM, PYGMALION assumes that the
function call stack contains relevant information to identify
recursive rules in the grammar. This approach works well for
hand-written, recursive descent parsers; however, it will have
severe difficulties with parsers generated by parser genera-
tors. These parsers are typically implemented as table-driven
automatons and do not use function calls at all. Addition-
ally, robust symbolic execution and taint tracking are still
challenging for binary-only targets.

USENIX Association 28th USENIX Security Symposium 1989

2.6 Shortcomings of Existing Approaches
To summarize, current automated software testing approaches
have the following disadvantages when used for fuzzing of
programs that accept structured input languages:

• Needs Human Assistance. Some techniques require
human assistance to function properly. Either in terms
of providing information or in terms of modifying the
target program.

• Requires Source Code. Some fuzzing techniques re-
quire access to source code. This puts them at a disad-
vantage as they cannot be applied to proprietary software
in binary format.

• Requires a Precise Environment Model. Techniques
based on formal reasoning such as symbolic/concolic
execution as well as taint tracking require precise seman-
tics of the underlying platform as well as semantics of
all used Operating System (OS) features (e. g., syscalls).

• Requires a Good Corpus. Many techniques only work
if the seed corpus already contains most features of the
input language.

• Requires a Format Specification. Similarly, many
techniques described in this section require precise for-
mat specifications for structured input languages.

• Limited To Certain Types of Parsers. Some ap-
proaches make strong assumptions about the underlying
implementation of the parser. Notably, some approaches
are unable to deal with parses generated by common
parser generators such as GNU Bison [15] or Yacc [37].

• Provides Only Small-scale Mutations. As discussed
in this section, various approaches cannot provide muta-
tions that cross large gaps in the program space.

Table 1: Requirements and limitations of different fuzzers and inference
tools when used for fuzzing structured input languages. If a shortcoming
applies to a tool, it is denoted with 7, otherwise with 3.

P
E

A
C

H

A
FL

R
E

D
Q

U
E

E
N

Q
SY

M

A
N

G
O

R
A

N
A

U
T

IL
U

S

A
F

L
SM

A
R

T

G
L

A
D

E

A
U

T
O

G
R

A
M

P
Y

G
M

A
L

IO
N

G
R

IM
O

IR
E

human assistance 7 3 3 3 3 7 7 7 7 3 3
source code 3 3 3 3 7 7 3 3 7 7 3
environment model 3 3 3 7 7 3 3 3 7 7 3
good corpus 3 3 3 3 3 3 7 7 7 3 3
format specifications 7 3 3 3 3 7 7 3 3 3 3

certain parsers 3 3 3 3 3 3 3 3 7 7 3
small-scale mutations 7 7 7 7 7 3 3 3 3 3 3

We analyzed existing fuzzing methods, the results of this
survey are shown in Table 1. We found that all current ap-
proaches have at least one shortcoming for fuzzing programs

with highly structured inputs. In the next section, we propose
a design that avoids all the mentioned drawbacks.

3 Design

Based on the challenges identified above, we now introduce
the design of GRIMOIRE, a fully automated approach that syn-
thesizes the target’s structured input language during fuzzing.
Furthermore, we present large-scale mutations that cross sig-
nificant gaps in the program space. Note that none of the
limitations listed in Table 1 applies to our approach. To
emphasize, our design does not require any previous infor-
mation about the input structure. Instead, we learn an ad-hoc
specification based on the program semantics and use it for
coverage-guided fuzzing.

We first provide a high-level overview of GRIMOIRE, fol-
lowed by a detailed description. GRIMOIRE is based on
identifying and recombining fragments in inputs that trig-
ger new code coverage during a normal fuzzing session. It
is implemented as an additional fuzzing stage on top of a
coverage-guided fuzzer. In this stage, we strip every new
input (that is found by the fuzzer and produced new coverage)
by replacing those parts of the input that can be modified or
replaced without affecting the input’s new coverage by the
symbol �. This can be understood as a generalization, in
which we reduce inputs to the fragments that trigger new cov-
erage, while maintaining information about gaps or candidate
positions (denoted by �). These gaps are later used to splice
in fragments from other inputs.

Example 2. Consider the input “if(x>1) then x=3 end”
and assume it was the first input to trigger the coverage for
a syntactically correct if-statement as well as for “x>1”. We
can delete the substring “x=3” without affecting the interest-
ing new coverage since the if-statement remains syntactically
correct. Additionally, the space between the condition and the

“then” is not mandatory. Therefore, we obtain the generalized
input “if(x>1)�then �end”.

After a set of inputs was successfully generalized, frag-
ments from the generalized inputs are recombined to produce
new candidate inputs. We incorporate various different strate-
gies to combine existing fragments, learned tokens (a special
form of substrings) and strings from the binary in an auto-
mated manner.

Example 3. Assume we obtained the following general-
ized inputs: “if(x>1)�then �end” and “�x=�y+�”.
We can use this information in many ways to generate
plausible recombinations. For example, starting with the
input “if(x>1)�then �end”, we can replace the sec-
ond gap with the second input, obtaining “if(x>1)�then
�x=�y+�end”. Afterwards, we choose the slice “�y+�”
from the second input and splice it into the fourth gap and
obtain “if(x>1)�then �x=�y+�y+�end”. In a last step,

1990 28th USENIX Security Symposium USENIX Association

we replace all remaining gaps by an empty string. Thus, the
final input is “if(x>1)then x=y+y+end”.

One could think of our approach as a context-free gram-
mar with a single non-terminal input � and all fragments of
generalized inputs as production rules. Using these loose,
grammar-like recombination methods in combination with
feedback-driven fuzzing, we are able to automatically learn
interesting structures.

3.1 Input Generalization
We try to generalize inputs that produced new coverage (e. g.,
inputs that introduced new bytes to the bitmap, cf. Sec-
tion 2.2). The generalization process (Algorithm 1) tries
to identify parts of the input that are irrelevant and fragments
that caused new coverage. In a first step, we use a set of rules
to obtain fragment boundaries (Line 3). Consecutively, we
remove individual fragments (Line 4). After each step, we
check if the reduced input still triggers the same new coverage
bytes as the original input (Line 5). If this is the case, we
replace the fragment that was removed by a � and keep the
reduced input (Line 6).

Algorithm 1: Generalizing an input through fragment
identification.

Data: input is the input to generalize, new_bytes are the new
bytes of the input, splitting_rule defines how to split an
input

Result: A generalized version of input
1 start← 0
2 while start < input.length() do
3 end← find_next_boundary(input, splitting_rule)
4 candidate← remove_substring(input, start, end)
5 if get_new_bytes(candidate) == new_bytes then
6 input← replace_by_gap(input, start, end)

7 start← end

8 input← merge_adjacent_gaps(input)

Example 4. Consider input “pprint ’aaaa’” triggers the
new bytes 20 and 33 because of the pprint statement. Fur-
thermore, assume that we use a rule that splits inputs into
non-overlapping chunks of length two. Then, we obtain the
chunks “pp”, “ri”, “nt”, “ ’”, “aa”, “aa” and “’”. If we
remove any of the first four chunks, the modified input will
not trigger the same new bytes since we corrupted the pprint
statement. However, if we remove the fifth or sixth chunk, we
still trigger the bytes 20 and 33 since the pprint statement
remains valid. Therefore, we reduce the input to “pprint
’��’”. As we have two adjacent �, we merge them into one.
The generalized input is “pprint ’�’”.

To generalize an input as much as possible, we use several
fragmentation strategies for which we apply Algorithm 1 re-
peatedly. First, we split the input into overlapping chunks of

size 256, 128, 64, 32, 2 and 1 to remove large uninteresting
parts as early as possible. Afterwards, we dissect at different
separators such as ‘.’, ‘;’, ‘,’, ‘\n’, ‘\r’, ‘\t’, ‘#’ and ‘ ’.
As a consequence, we can remove one or more statements
in code, comments and other parts that did not cause the in-
put’s new coverage. Finally, we split at different kinds of
brackets and quotation marks. These fragments can help to
generalize constructs such as function parameters or nested
expressions. In detail, we split in between of ‘()’, ‘[]’, ‘{}’,
‘<>’ as well as single and double quotes. To guess differ-
ent nesting levels in between these pairs of opening/closing
characters, we extend Algorithm 1 as follows: If the current
index start matches an opening character, we search the
furthermost matching closing character, create a candidate
by removing the substring in between and check if it triggers
the same new coverage. We iteratively do this by choosing
the next furthermost closing character—effectively shrinking
the fragment size—until we find a substring that can be re-
moved without changing the new_bytes or until we reach the
index start. In doing so, we are able to remove the largest
matching fragments from the input that are irrelevant for the
input’s new coverage.

Since we want to recombine (generalized) inputs to find
new coverage—as we describe in the following section—we
store the original input as well as its generalization. Further-
more, we split the generalized input at every � and store the
substrings (tokens) in a set; these tokens often are syntacti-
cally interesting fragments of the structured input language.

Example 5. We map the input “if(x>1) then x=3 end”
to its generalization “if(x>1)�then �end”. In addition,
we extract the tokens “if(x>1)”, “then ” and “end”. For
the generalized input “�x=�y+�”, we remember the tokens

“x=” and “y+”.

3.2 Input Mutation
GRIMOIRE builds upon knowledge obtained from the gener-
alization stage to generate inputs that have good chances of
finding new coverage. For this, it recombines (fragments of)
generalized inputs, tokens and strings (stored in a dictionary)
that are automatically obtained from the data section of the
target’s binary. On a high level, we can divide our mutations
into three standalone operations: input extension, recursive
replacement and string replacement.

Given the current input from the fuzzing queue, we add
these mutations to the so-called havoc phase [3] as described
in Algorithm 2. First, we use Redqueen’s havoc_amount to
determine—based on the input’s performance—how often
we should apply the following mutations (in general, be-
tween 512 and 1024 times). First, if the input triggered
new bytes in the bitmap, we take its generalized form
and apply the large-scale mutations input_extension and
recursive_replacement. Afterwards, we take the original
input string (accessed by input.content()) and apply the

USENIX Association 28th USENIX Security Symposium 1991

String ReplacementInput

10
1 10
01

101
1010
01

Recursive Replacement

Input ExtensionGeneralized
Input

Ex
ec

ut
io

n
En

gi
ne

Figure 3: A high-level overview of our mutations. Given an input, we apply
various mutations on its generalized and original form. Each mutation then
feeds mutated variants of the input to the fuzzer’s execution engine.

string_replacement mutation. This process is illustrated
in Figure 3.

Algorithm 2: High-level overview of the mutations
introduced in GRIMOIRE.

Data: input is the current input in the queue, generalized is the
set of all previously generalized inputs, tokens and strings
from the dictionary, strings is the provided dictionary
obtained from the binary

1 content← input.content()
2 n← havoc_amount(input.performance())
3 for i← 0 to n do
4 if input.is_generalized() then
5 input_extension(input, generalized)
6 recursive_replacement(input, generalized)

7 string_replacement(content, strings)

Before we describe our mutations in detail, we ex-
plain two functions that all mutations have in common—
random_generalized and send_to_fuzzer. The function
random_generalized takes as input a set of all previously
generalized inputs, tokens and strings from the dictionary and
returns—based on random coin flips—a random (slice of a)
generalized input, token or string. In case we pick an input
slice, we select a substring between two arbitrary � in a gen-
eralized input. This is illustrated in Algorithm 3. The other
function, send_to_fuzzer, implies that the fuzzer executes
the target application with the mutated input. It expects con-
crete inputs. Thus, mutations working on generalized inputs
first replace all remaining � by an empty string.

Algorithm 3: Random selection of a generalized in-
put, slice, token or string.

Data: generalized is the set of all previously generalized inputs,
tokens and strings from the dictionary

Result: rand is a random generalized input, slice token or string
1 if random_coin() then
2 if random_coin() then
3 rand← random_slice(generalized)

4 else
5 rand← random_token_or_string(generalized)

6 else
7 rand← random_generalized_input(generalized)

3.2.1 Input Extension

The input extension mutation is inspired by the observation
that—in highly structured input languages—often inputs are
chains of syntactically well-formed statements. Therefore,
we extend an generalized input by placing another randomly
chosen generalized input, slice, token or string before and
after the given one. This is described in Algorithm 4.

Algorithm 4: Overview of the input extension muta-
tion.

Data: input is the current generalized input, generalized is the
set of all previously generalized inputs, tokens and strings
from the dictionary

1 rand← random_generalized(generalized_inputs)
2 send_to_fuzzer(concat(input.content(),
rand.content()))

3 send_to_fuzzer(concat(rand.content(),
input.content()))

Example 6. Assume that the current input is “pprint
’aaaa’” and its generalization is “pprint ’�’”. Further-
more, assume that we randomly choose a previous generaliza-
tion “�x=�y+�”. Then, we concretize their generalizations
to “pprint ’$$’” and “x=y+” by replacing remaining gaps
with an empty string. Afterwards, we concatenate them and
obtain “pprint ’$$’x=y+” and “x=y+pprint ’$$’”.

3.2.2 Recursive Replacement

The recursive replacement mutation recombines knowledge
about the structured input language—that was obtained earlier
in the fuzzing run—in a grammar-like manner. As illustrated
in Algorithm 5, given a generalized input, we extend its begin-
ning and end by �—if not yet present—such that we always
can place other data before or behind the input. Afterwards,
we randomly select n ∈ {2,4,8,16,32,64} and perform the
following operations n times: First, we randomly select an-
other generalized input, input slice, token or string. Then, we
call replace_random_gap which replaces an arbitrary � in
the first generalized input by the chosen element. Further-
more, we enforce � before and after the replacement such
that these � can be subject to further replacements. Finally,
we concretize the mutated input and send it to the fuzzer. The
recursive replacement mutator has a (comparatively) high
likelihood of producing new structurally interesting inputs
compared to more small-scale mutations used by current
coverage-guided fuzzers.

Example 7. Assume that the current input is “pprint
’aaaa’”. We take its generalization “pprint ’�’” and
extend it to “�pprint ’�’�”. Furthermore, assume that
we already generalized the inputs “if(x>1)�then �end”
and “�x=�y+�”. In a first mutation, we choose to re-
place the first � with the slice “if(x>1)�”. We extend
the slice to “�if(x>1)�” and obtain “�if(x>1)�pprint

1992 28th USENIX Security Symposium USENIX Association

Algorithm 5: Overview of the recursive replacement
mutation.

Data: input is the current generalized input, generalized is the
set of all previously generalized inputs, tokens and strings
from the dictionary

1 input← pad_with_gaps(input)
2 for i← 0 to random_power_of_two() do
3 rand← random_generalized(generalized_inputs)
4 input← replace_random_gap(input, rand)

5 send_to_fuzzer(input.content())

’�’�”. Afterwards, we choose to replace the third
� with “�x=�y+�” and obtain “�if(x>1)�pprint
’�x=�y+�’�”. In a final step, we replace the remaining �
with an empty string and obtain “if(x>1)pprint ’x=y+’”.

3.2.3 String Replacement

Keywords are important elements of structured input lan-
guages; changing a single keyword in an input can lead to
completely different behavior. GRIMOIRE’s string replace-
ment mutation performs different forms of replacements, as
described in Algorithm 6. Given an input, it locates all sub-
strings in the input that match strings from the obtained dic-
tionary and chooses one randomly. GRIMOIRE first selects a
random occurrence of the matching substring and replaces it
with a random string. In a second step, it replaces all occur-
rences of the substring with the same random string. Finally,
the mutation sends both mutated inputs to the fuzzer. As an
example, this mutation can be helpful to discover different
methods of the same object by replacing a valid method call
with different alternatives. Also, changing all occurrences of
a substring allows us to perform more syntactically correct
mutations, such as renaming of variables in the input.

Example 8. Assume the “if(x>1)pprint ’x=y+’” and that
the strings “if”, “while”, “key”, “pprint”, “eval”, “+”, “=”
and “–” are in the dictionary. Thus, the string replacement
mutation can generate inputs such as “while(x>1)pprint
’x=y+’”, “if(x>1)eval ’x+y+’” or “if(x>1)pprint
’x=y-’”. Furthermore, assume that the string “x” is also in
the dictionary. Then, the string replacement mutation can re-
place all occurrences of the variable “x” in “if(x>1)pprint
’x=y+’” and obtain “if(key>1)pprint ’key=y+’”.

4 Implementation

To evaluate the algorithms introduced in this paper, we built a
prototype implementation of our design. Our implementation,
called GRIMOIRE, is based on REDQUEEN’s [3] source code.
This allows us to implement our techniques within a state-
of-the-art fuzzing framework. REDQUEEN is applicable to
both open and closed source targets running in user or kernel
space, thus enabling us to target a wide variety of programs.

Algorithm 6: Overview of the string replacement mu-
tation.

Data: input is the input string, strings is the provided dictionary
obtained from the binary

1 sub← find_random_substring(input, strings)
2 if sub then
3 rand← random_string(strings)
4 data← replace_random_instance(input, sub, rand)
5 send_to_fuzzer(data)
6 data← replace_all_instances(input, sub, and)
7 send_to_fuzzer(data)

While REDQUEEN is entirely focused on solving magic bytes
and similar constructs which are local in nature (i. e., require
only few bytes to change), GRIMOIRE assumes that this kind
of constraints can be solved by the underlying fuzzer. It
uses global mutations (that change large parts of the input)
based on the examples that the underlying fuzzer finds. Since
our technique is merely based on common techniques imple-
mented in coverage-guided fuzzers—for instance, access to
the execution bitmap—it would be a feasible engineering task
to adapt our approach to other current fuzzers, such as AFL.

More precisely, GRIMOIRE is implemented as a set of
patches to REDQUEEN. After finding new inputs, we apply
the generalization instead of the minimization algorithm that
was used by AFL and REDQUEEN. Additionally, we extended
the havoc stage by large-scale mutations as explained in Sec-
tion 3. To prevent GRIMOIRE from spending too much time
in the generalization phase, we set a user-configurable upper
bound; inputs whose length exceeds this bound are not be gen-
eralized. Per default, it is set to 16384 bytes. Overall, about
500 lines were written to implement the proposed algorithms.

To support reproducibility of our approach, we open
source the fuzzing logic, especially the implementation of
GRIMOIRE as well as its interaction with REDQUEEN at
https://github.com/RUB-SysSec/grimoire.

5 Evaluation

We evaluate our prototype implementation GRIMOIRE to an-
swer the following research questions.

RQ 1 How does GRIMOIRE compare to other state-of-the-
art bug finding tools?

RQ 2 Is our approach useful even when proper grammars
are available?

RQ 3 How does our approach improve the performance on
targets that require highly structured inputs?

RQ 4 How does our approach perform compared to other
grammar inference techniques for the purpose of
fuzzing?

RQ 5 How do our mutators impact fuzzing performance?

USENIX Association 28th USENIX Security Symposium 1993

https://github.com/RUB-SysSec/grimoire

RQ 6 Can GRIMOIRE identify new bugs in real-world ap-
plications?

To answer these questions, we perform three individual
experiments. First, we evaluate the coverage produced by
various fuzzers on a set of real-world target programs. In
the second experiment, we analyze how our techniques can
be combined with grammar-based fuzzers for mutual im-
provements. Finally, we use GRIMOIRE to uncover a set of
vulnerabilities in real-world target applications.

5.1 Measurement Setup
All experiments are performed on an Ubuntu Server 16.04.2
LTS with an Intel i7-6700 processor with 4 cores and 24 GiB
of RAM. Each tool is evaluated over 12 runs for 48 hours to
obtain statistically meaningful results. In addition to other
statistics, we also measure the effect size by calculating the
difference in the median of the number of basic blocks found
in each run. Additionally, we perform a Mann Whitney U
test (using scipy 1.0 [38]) and report the resulting p-values.
All experiments are performed with the tool being pinned to
a dedicated CPU in single-threaded mode. Tools other than
GRIMOIRE and REDQUEEN require source-code access; we
use the fast clang-based instrumentation in these cases. Addi-
tionally, to ensure a fair evaluation, we provide each fuzzer
with a dictionary containing the strings found inside of the
target binary. In all cases, except NAUTILUS (which crashed
on larger bitmaps), we increase the bitmap size from 216 to
219. This is necessary since we observe more collisions in the
global coverage map for large targets which causes the fuzzer
to discard new coverage. For example, in SQLite (1.9 MiB),
14% of the global coverage map entries collide [66]. Since
we deal with even larger binaries such as PHP which is nearly
19 MiB, the bitmap fills up quickly. Based on our empirical
evaluation, we observed that 219 is the smallest sufficient size
that works for all of our target binaries.

Furthermore, we disable the so-called deterministic
stage [66]. This is motivated by the observation that these
deterministic mutations are not suited to find new coverage
considering the nature of highly structured inputs. Finally—
if not stated otherwise—we use the same uninformed seed
that the authors of REDQUEEN used for their experiments:
"ABC. . .XYZabc. . .xyz012. . .789!"$. . .~+*".

As noted by Aschermann et al. [3], there are various def-
initions of a basic block. Fuzzers such as AFL change the
number of basic blocks in a program. Thus, to enable a fair
comparison in our experiments, we measure the coverage
produced by each fuzzer on the same uninstrumented binary.
Therefore, the numbers of basic blocks found and reported in
our paper might differ from other papers. However, they are
consistent within all of our experiments.

For our experiments, we select a diverse set of tar-
get programs. We use four scripting language inter-
preters (mruby-1.4.1 [41], php-7.3.0 [57], lua-5.3.5 [36]

and JavaScriptCore, commit “f1312” [1]) a compiler
(tcc-0.9.27 [6]), an assembler (nasm-2.14.02 [56]), a
database (sqlite-3.25 [31]), a parser (libxml-2.9.8 [59])
and an SMT solver (boolector-3.0.1 [44]). We select these
four scripting language interpreters so that we can directly
compare the results to NAUTILUS. Note that our choice of
targets is additionally governed by architectural limitations of
REDQUEEN which GRIMOIRE is based on. REDQUEEN uses
Virtual Machine Introspection (VMI) to transfer the target
binary—including all of its dependencies—into the Virtual
Machine (VM). The maximum transfer size using VMI in
REDQUEEN is set to 64 MiB. Programs such as Python [49],
GCC [18], Clang [40], V8 [24] and SpiderMonkey [43] ex-
ceed our VMI limitation; thus, we can not evaluate them.
We select an alternative set of target binaries that are large
enough but at the same time do not exceed our 64 MiB
transfer size limit. Hence, we choose JavaScriptCore over
V8 and SpiderMonkey, mruby over ruby and TCC over GCC
or Clang. Finally, we tried to evaluate GRIMOIRE with
ChakraCore [42]. However, ChakraCore fails to start in-
side of the REDQUEEN Virtual Machine for unknown rea-
sons. Still, GRIMOIRE performs well on large targets such as
JavaScriptCore and PHP.

5.2 State-of-the-Art Bug Finding Tools

To answer RQ 1, we perform 12 runs on eight targets using
GRIMOIRE and four state-of-the-art bug finding tools. We
choose AFL (version 2.52b) because it is a well-known fuzzer
and a good baseline for our evaluation. We select QSYM
(commit “6f00c3d”) and ANGORA (commit “6ff81c6”), two
state-of-the-art hybrid fuzzers which employ different pro-
gram analysis techniques, namely symbolic execution and
taint tracking. Finally, we choose REDQUEEN as a state-of-
the-art coverage-guided fuzzer, which is also the baseline of
GRIMOIRE. As a consequence, we are able to directly ob-
serve the improvements of our method. Note that we could
not compile libxml for ANGORA instrumentation. Therefore,
ANGORA is missing in the libxml plot.

The results of our coverage measurements are shown in Fig-
ure 4. As we can see, in all cases GRIMOIRE provides a signif-
icant advantage over the baseline (unmodified REDQUEEN).
Surprisingly, in most cases, neither ANGORA, REDQUEEN,
nor QSYM seem to have a significant edge over plain AFL.
This can be explained by the fact that REDQUEEN and AN-
GORA mostly aim to overcome certain “magic byte” fuzzing
roadblocks. Similarly, QSYM is also effective to solve these
roadblocks. Since we provide a dictionary with strings from
the target binary to each fuzzer, these roadblocks become
much less common. Thus, the techniques introduced in AN-
GORA, REDQUEEN and QSYM are less relevant given the
seeds provided to the fuzzers. However, in the case of TCC, we
can observe that providing the strings dictionary does not help
AFL. Therefore, we believe that ANGORA and REDQUEEN

1994 28th USENIX Security Symposium USENIX Association

00 05 10 15 20 25 30 35 40 45
0

5000

10000

15000

20000
mruby

Grimoire

Redqueen

AFL

QSYM

Angora

00 05 10 15 20 25 30 35 40 45
0

2000

4000

6000

8000

tcc

00 05 10 15 20 25 30 35 40 45
0

10000

20000

30000

40000

php

00 05 10 15 20 25 30 35 40 45
0

5000

10000

15000

20000
boolector

00 05 10 15 20 25 30 35 40 45
0

1000

2000

3000

4000

5000

6000

lua

00 05 10 15 20 25 30 35 40 45
0

2000

4000

6000

8000

xml

00 05 10 15 20 25 30 35 40 45
0

5000

10000

15000

20000

sqlite

00 05 10 15 20 25 30 35 40 45
0

2000

4000

6000

8000

10000
nasm

Time (hh:mm)

#
B

B
s

fo
u

n
d

Figure 4: The coverage (in basic blocks) produced by various tools over 12
runs for 48h on various targets. Displayed are the median and the 66.7%
intervals.

find strings that are not part of the dictionary and thus outper-
form AFL.

A complete statistical description of the results is given in
the appendix (Table 7). We perform a confirmatory statistical
analysis on the results, as shown in Table 2. The results show
that in all but two cases (Lua and NASM), GRIMOIRE offers
relevant and significant improvements over all state-of-the-art
alternatives. On average, it finds nearly 20% more coverage
than the second best alternative.

Table 2: Confirmatory data analysis of our experiments. We compare the
coverage produced by GRIMOIRE against the best alternative. The effect size
is the difference of the medians in basic blocks. In most experiments, the
effect size is relevant and the changes are highly significant: it is typically
multiple orders of magnitude smaller than the usual bound of p < 5.0E-02
(bold).

Target Best
Alternative

Effect Size
(∆ = Ā− B̄)

Effect Size
in % of Best

p-value

mruby ANGORA 3685 19.3% 1.8E-05
TCC REDQUEEN 1952 22.6% 7.8E-05
PHP REDQUEEN 11238 31.6% 1.8E-05
Boolector AFL 7671 43.9% 1.8E-05
Lua ANGORA -478 -8.2% 4.5E-04
libxml AFL 308 3.4% 1.8E-02
SQLite ANGORA 4846 26.8% 1.8E-05
NASM ANGORA 272 2.9% 9.7E-02

Lua accepts both source files (text) as well as byte code.
GRIMOIRE can only make effective mutations in the domain
of language features and not the bytecode. However, other
fuzzers can perform on both; this is why ANGORA outper-
forms GRIMOIRE on this target. It is worth mentioning that
GRIMOIRE outperforms REDQUEEN, the baseline on top of
which our approach is implemented.

To partially answer RQ 1, we showed that in terms of
code coverage, GRIMOIRE outperforms other state-of-the-art
bug finding tools (in most cases). Second, to answer RQ 3,
we demonstrated that GRIMOIRE significantly improves the
performance on targets with highly structured inputs when
compared to our baseline (REDQUEEN).

5.3 Grammar-based Fuzzers

Generally, we expect grammar-based fuzzers to have an edge
over grammar inference fuzzers like GRIMOIRE since they
have access to a manually crafted grammar. To quantify this
advantage, we evaluate GRIMOIRE against current grammar-
based fuzzers. To this end, we choose NAUTILUS (commit
“dd3554a”), a state-of-the-art coverage-guided fuzzer, since
it can fuzz a wide variety of targets if provided with a hand-
written grammar. We evaluate on the targets used in NAU-
TILUS’ experiments, mruby, PHP and Lua, as their grammars
are available. Unfortunately, GRIMOIRE is not capable of
running ChakraCore, the fourth target NAUTILUS was eval-
uated on; thus, we replace it by JavaScriptCore and use
NAUTILUS’ JavaScript grammar. We observed that the origi-
nal version of NAUTILUS had some timeout problems during
fuzzing where the timeout detection did not work properly.
We fixed this for our evaluation.

For each of the four targets, we perform an experiment
with the same setup as the first experiment (again, 12 runs for
48 hours). The results are shown in Figure 5. As expected,
our completely automated method is defeated in most cases
by NAUTILUS since it uses manually fine-tuned grammars.

USENIX Association 28th USENIX Security Symposium 1995

Surprisingly, in the case of mruby, we find that GRIMOIRE is
able to outperform even NAUTILUS.

To evaluate whether GRIMOIRE is still useful in scenarios
where a grammar is available, we perform another experiment.
We extract the corpus produced by NAUTILUS after half of
the time (i. e., 24 hours) and continue to use GRIMOIRE for
another 24 hours using this seed corpus. For these incre-
mental runs, we reduce GRIMOIRE’s upper bound for input
generalization to 2,048 bytes; otherwise, our fuzzer would
mainly spend time in the generalization phase since NAU-
TILUS produces very large inputs. The results are displayed
in Figure 5 (incremental). This experiment demonstrates that
even despite manual fine-tuning, the grammar often contains
blind spots, where an automated approach such as ours can
infer the implicit structure which the program expects. This
structure may be quite different from the specified grammar.
As Figure 5 shows, by using the corpus created by NAU-
TILUS, GRIMOIRE surpasses NAUTILUS individually in all
cases (RQ 2). A confirmatory statistical analysis of the results
is presented in Table 3. In three cases, GRIMOIRE is able to
improve upon hand written grammars by nearly 10%.

Table 3: Confirmatory data analysis of our experiment. We compare the
coverage produced by GRIMOIRE against NAUTILUS with hand written
grammars. The effect size is the difference of the medians in basic blocks in
the incremental experiment. In three experiments, the effect size is relevant
and the changes are highly significant (marked bold, p < 5.0E-02). Note that
we abbreviate JavaScriptCore with JSC.

Target Best
Alternative

Effect Size
(∆ = Ā− B̄)

Effect Size
in % of Best

p-value

mruby NAUTILUS 2025 10.0% 1.8E-05
Lua NAUTILUS 553 5.2% 5.0E-02
PHP NAUTILUS 5465 9.3% 3.6E-03
JSC NAUTILUS 15445 11.0% 1.8E-05

Additionally, we intended to compare GRIMOIRE against
CODEALCHEMIST and JSFUNFUZZ, two other state-of-the
art grammar-based fuzzers which specialize on JavaScript
engines. Although these two fuzzers are not coverage-
guided—making a fair evaluation challenging—we consider
the comparison of specialized JavaScript grammar-based
fuzzers to general-purpose grammar-based fuzzers as inter-
esting. Unfortunately, JSFUNFUZZ was not working with
JavaScriptCore out of the box as it is specifically tailored
to SpiderMonkey. Since it requires significant modifications
to run on JavaScriptCore, we considered the required engi-
neering effort to be out of scope for this paper. On the other
hand, CODEALCHEMIST requires an extensive seed corpus
of up to 60,000 valid JavaScript files—which were not re-
leased together with the source files. We tried to replicate the
seed corpus as described by the authors of CODEALCHEMIST.
However, despite the authors’ kind help, we were unable to
run CODEALCHEMIST with our corpus.

00 05 10 15 20 25 30 35 40 45
0

5000

10000

15000

20000

mruby

Grimoire Nautilus

24 29 34 39 44
0

5000

10000

15000

20000

mruby incremental

00 05 10 15 20 25 30 35 40 45
0

10000

20000

30000

40000

50000

60000
php

24 29 34 39 44
0

10000

20000

30000

40000

50000

60000
php incremental

00 05 10 15 20 25 30 35 40 45
0

2000

4000

6000

8000

10000

12000
lua

24 29 34 39 44
0

2000

4000

6000

8000

10000

12000
lua incremental

00 05 10 15 20 25 30 35 40 45
0

25000

50000

75000

100000

125000

150000
jsc

24 29 34 39 44
0

25000

50000

75000

100000

125000

150000
jsc incremental

Time (hh:mm)

#
B

B
s

fo
u

n
d

Figure 5: The coverage (in basic blocks) produced by GRIMOIRE and NAU-
TILUS (using the hand written grammars of the authors of NAUTILUS) over
12 runs at 48 h on various targets. The incremental plots show how running
NAUTILUS for 48h compares to running NAUTILUS for the first 24h and then
continue fuzzing for 24h with GRIMOIRE. Displayed are the median and the
66.7% confidence interval.

Overall, these experiments confirm our assumption that
grammar-based fuzzers such as NAUTILUS have an edge
over grammar inference fuzzers like GRIMOIRE. However,
deploying our approach on top of a grammar-based fuzzer
(incremental runs) increases code coverage. Therefore, we
partially respond to RQ 1 and provide an answer to RQ 2
by stating that GRIMOIRE is a valuable addition to current
fuzzing techniques.

5.4 Grammar Inference Techniques

To answer RQ 4, we compare our approach to other gram-
mar inference techniques in the context of fuzzing. Existing
work in this field includes GLADE, AUTOGRAM and PYG-
MALION. However, since PYGMALION targets only Python
and AUTOGRAM only Java programs, we cannot evaluate

1996 28th USENIX Security Symposium USENIX Association

00 05 10 15 20 25 30 35 40 45
0

5000

10000

15000

20000

mruby

Grimoire Glade (+training) Glade

00 05 10 15 20 25 30 35 40 45
0

2000

4000

6000

8000
lua

00 05 10 15 20 25 30 35 40 45
0

2000

4000

6000

8000

10000

xml

Time (hh:mm)

#
B

B
s

fo
u

n
d

Figure 6: Comparing GRIMOIRE against GLADE (median and 66.7% interval). In the plot for GLADE +Training, we include the training time that glade used.
For comparison, we also include plots where we omit the training time. The horizontal bar displays the coverage produced by the seed corpus that GLADE used
during training.

them as GRIMOIRE only supports targets that can be traced
with Intel-PT (since REDQUEEN heavily depends on it).

Therefore, for this evaluation, we use GLADE (commit
“b9ef32e”), a state-of-the-art grammar inference tool. It oper-
ates in two stages. Given a program as black-box oracle as
well as a corpus of valid input samples, it learns a grammar in
the first stage. In the second stage, GLADE uses this grammar
to produce inputs that can be used for fuzzing. GLADE does
not generate a continuous stream of inputs, hence we modi-
fied it to provide such capability. We then use these inputs to
measure the coverage achieved by GLADE in comparison to
GRIMOIRE. Note that due to the excessive amount of inputs
produced by GLADE, we use a corpus minimization tool—
afl-cmin—to identify and remove redundant inputs before
measuring the coverage [66].

Note, we have to extend GLADE for each target that is
not natively supported and must manually create a valid seed
corpus. For this reason, we restrict ourselves to the three
targets libxml, mruby and Lua. From these, libxml is the
only one that was also used in GLADE’s evaluation. Therefore,
we are able to re-use their provided corpus for this target. We
choose the other two since we want to achieve comparability
with regards to previous experiments.

To allow for a fair comparison, we provide the same corpus
to GRIMOIRE. Again, we repeat all experiments 12 times for
48 hours each. The results of this comparison are depicted in
Figure 6. Note that this figure includes two different experi-
ments of GLADE. In the first experiment, we include the time
GLADE spent on training into the measurement while for the
second measurement, GLADE is provided the advantage of
concluding the training stage before measurement is started
for the fuzzing process. As can be seen in Figure 6, GRI-
MOIRE significantly outperforms GLADE on all targets for
both experiments. Similar to earlier experiments, we perform
a confirmatory statistical analysis. The results are displayed
in Table 4; they are in all cases relevant and statistically sig-
nificant. If we consider only the new coverage found (beyond

what is already contained in the training set), we are able to
outperform GLADE by factors from two to five. We therefore
conclude in response to RQ 4 that we significantly exceed
comparative grammar inference approaches in the context of
fuzzing.

We designed another experiment to evaluate whether
GLADE’s automatically inferred grammar can be used for
NAUTILUS and how it performs compared to hand written
grammars. However, GLADE does not use the grammar di-
rectly but remembers how the grammar was produced from
the provided test cases and uses the grammar only to apply
local mutations to the input. Unfortunately, as a consequence,
their grammar contains multiple unproductive rules, thus pre-
venting their usage in NAUTILUS.

Table 4: Confirmatory data analysis of our experiments. We compare the
coverage produced by GRIMOIRE against GLADE. The effect size is the
difference of the medians in basic blocks. In all experiments, the effect size
is relevant and the changes are highly significant: it is multiple orders of
magnitude smaller than the usual bound of p < 5.0E-02 (bold).

Target Best
Alternative

Effect Size
(∆ = Ā− B̄)

Effect Size
in % of Best

p-value

mruby GLADE 8546 43.6% 9.1E-05
Lua GLADE 2775 38.1% 9.1E-05
libxml GLADE 5213 57.2% 9.1E-05

5.5 Mutations Statistic
During the aforementioned experiments, we also collected
various statistics on how effective different mutators are. We
measured how much time was spent using GRIMOIRE’s dif-
ferent mutation strategies as well as how many of the inputs
were found by each strategy. This allows us to rank mutation
strategies based on the number of new paths found per time
used. The strategies include a havoc stage, REDQUEEN’s
Input-to-State-based mutation stage and our structural muta-
tion stage. The times for our structural mutators include the

USENIX Association 28th USENIX Security Symposium 1997

generalization process (including the necessary minimization
that also benefits the other mutators).

As Table 5 shows, our structural mutators are competitive
with other mutators, which answers RQ 5. As the coverage
results in Figure 4 show, the mutators are also able to uncover
paths that would not have been found otherwise.

Table 5: Statistics for each of GRIMOIRE’s mutation strategies (i. e., our struc-
tured mutations, REDQUEEN’s Input-to-State-based mutations and havoc).
For every target evaluated we list the total number of inputs found by a
mutation, the time spent on this strategy and the ratio of inputs found per
minute.

Mutation Target #Inputs Time Spent (min) #Inputs/Min

Structured

mruby 9040 1531.18 5.90
PHP 27063 2467.17 10.97
Lua 2849 2064.49 1.38
SQLite 5933 1325.26 4.48
TCC 6618 2271.03 2.91
Boolector 3438 2399.85 1.43
libxml 4883 2001.38 2.44
NASM 12696 1955.42 6.49
JavaScriptCore 38465 2460.95 15.63

Input-to-State

mruby 814 268.23 3.03
PHP 902 111.46 8.09
Lua 530 307.12 1.73
SQLite 603 768.72 0.78
TCC 1020 118.23 8.63
Boolector 325 102.87 3.16
libxml 967 359.03 2.69
NASM 1329 213.84 6.22
JavaScriptCore 400 82.76 4.83

Havoc

mruby 2010 339.03 5.93
PHP 2546 278.21 9.15
Lua 1684 492.99 3.42
SQLite 1827 742.13 2.46
TCC 2514 484.73 5.19
Boolector 956 373.85 2.56
libxml 2173 504.86 4.30
NASM 2876 678.59 4.24
JavaScriptCore 3800 279.62 13.59

5.6 Real-World Bugs
We use GRIMOIRE on a set of different targets to observe
whether it is able to uncover previously unknown bugs (RQ 6).
To this end, we manually triaged bugs found during our eval-
uation. As illustrated in Table 6, GRIMOIRE found more bugs
than all other tools in the evaluation combined. We responsi-
bly disclosed all of them to the vendors. For these, 11 CVEs
were assigned. Note that we found a large number of bugs
that did not lead to assigned CVEs. This is partially because
projects such as PHP do not consider invalid inputs as secu-
rity relevant, even when custom scripts can trigger memory
corruption. We conclude RQ 6 by finding that GRIMOIRE is
indeed able to uncover novel bugs in real-world applications.

6 Discussion

The methods introduced in this paper produce significant
performance gains on targets that expect highly structured
inputs without requiring any expert knowledge or manual
work. As we have shown, GRIMOIRE can also be used to
support grammar-based fuzzers with well-tuned grammars but

Table 6: Overview of submitted bugs and CVEs. Fuzzers which did not find
the bug during our evaluation are denoted by 7, while those who did are
marked by 3. We indicate targets not evaluated by a specific fuzzer with
’-’. We abbreviate Use-After-Free (UAF), Out-of-Bounds (OOB) and Buffer
Overflow (BO).

Target CVE Type G
R

IM
O

IR
E

R
E

D
Q

U
E

E
N

A
FL

Q
SY

M

A
N

G
O

R
A

N
A

U
T

IL
U

S

PHP OOB-write 3 7 7 7 7 3
PHP OOB-read 3 7 7 3 3 7
PHP OOB-read 3 7 7 7 7 3
PHP OOB-read 3 7 7 7 7 7
TCC 2018-20374 OOB-write 3 7 7 7 7 -
TCC 2018-20375 OOB-write 3 3 7 7 7 -
TCC 2018-20376 OOB-write 3 3 7 7 7 -
TCC 2019-12495 OOB-write 3 7 7 7 7 -
TCC 2019-9754 OOB-write 3 3 7 7 7 -
TCC OOB-write 7 3 7 7 7 -
Boolector 2019-7559 OOB-write 3 7 7 7 7 -
Boolector 2019-7560 UAF-write 3 7 7 7 7 -
NASM 2019-8343 UAF-write 3 3 7 7 7 -
NASM OOB-write 3 7 3 7 7 -
NASM OOB-write 3 7 7 7 7 -
NASM OOB-write 3 7 7 7 7 -
NASM OOB-write 3 7 3 7 7 -
NASM OOB-write 7 7 3 7 7 -

gnuplot 2018-19490 BO 3 - - - - -
gnuplot 2018-19491 BO 3 - - - - -
gnuplot 2018-19492 BO 3 - - - - -

cannot outperform them on their own. In contrast to similar
methods, our approach does not rely on complex primitives
such as symbolic execution or taint tracking. Therefore, it
can easily be integrated into existing fuzzers. Additionally,
since GRIMOIRE is based on REDQUEEN, it can be used on
a wide variety of binary-only targets, ranging from userland
programs to operating system kernels.

Despite all advantages, our approach has significant dif-
ficulties with more syntactically complex constructs, such
as matching the ID of opening and closing tags in XML or
identifying variable constructs in scripting languages. For
instance, while GRIMOIRE is able to produce nested in-
puts such as “<a><a><a>FOO”, it struggles to
generalize “<a>�” to the more unified representation
“< A >�</ B >” with the constraint A = B. A solution for
such complex constructs could be the following generaliza-
tion heuristic: (i) First, we record the new coverage for
the current input. (ii) We then change only a single occur-
rence of a substring in our input and record its new coverage.
For instance, consider that we replace a single occurrence
of “a” by “b” in “<a><a><a>FOO” and obtain
“<a><a>FOO”. This change results in an
invalid XML tag which leads to different coverage compared
to the one observed in (i). (iii) Finally, we change multiple
instances of the same substring and compare the new cover-
age of the modified input with the one obtained in (i). If we

1998 28th USENIX Security Symposium USENIX Association

achieved the same new coverage in (iii) and (i), we can assume
that the modified instances of the same substring are related
to each other. For example, we replace multiple occurrences
of “a” with “b” and obtain “<a><a>FOO”.
In this example, the coverage is the same as for the original
input since the XML remains syntactically correct.

Similarly, our generalization approach might be too coarse
in many places. Obtaining more precise rules would help un-
covering deeper parts of the target application in cases where
multiple valid statements have to be produced. Consider, for
instance, a scripting language interpreter such as the ones
used in our evaluation. Certain operations might require a
number of constructors to be successfully called. For exam-
ple, it might be necessary to get a valid path object to obtain a
file object that can finally be used to perform a read operation.
A more precise representation would be highly useful in such
cases. One could try to infer whether a combination is “valid”
by checking if the combination of two inputs exercises the
combination of the new coverage introduced by both inputs.
For instance, assume that input “a�b” triggers the cover-
age bytes 7 and 10 and that input “�=�” triggers coverage
byte 20. Then, a combination of these two inputs such as
“�a�=�b” could trigger the coverage bytes 7, 10 and 20.
Using this information, it might be possible to infer more
precise grammar descriptions and thus generate inputs that
are closer to the target’s semantics than it is currently possible
in GRIMOIRE. While this approach would most likely further
reduce the gap between hand-written grammars and inferred
grammars, well-designed hand-written grammars will always
have an edge over fuzzers with no prior knowledge: any
kind of inference algorithm first needs to uncover structures
before the obtained knowledge can be used. A grammar-
based fuzzer has no such disadvantage. If available, human
input can improve the results of grammar inference or steer
its direction. An analyst can provide a partial grammar to
make the grammar-fuzzer focus on a specific interesting area
and avoid exploring paths that are unlikely to contain bugs.
Therefore, GRIMOIRE is useful if the grammar is unknown or
under-specified but cannot be considered a full replacement
for grammar-based fuzzers.

7 Related Work

A significant number of approaches to improve the perfor-
mance of different fuzzing strategies has been proposed over
time. Early on, fuzzers typically did not observe the inner
workings of the target application, yet different approaches
were proposed to improve various aspects of fuzzers: different
mutation strategies were evaluated [14, 29], the process of se-
lecting and scheduling of seed inputs was analyzed [11,51,61]
and, in some cases, even learned language models were used
to improve the effectiveness of fuzzing [22, 27]. After the
publication of AFL [65], the research focus shifted towards
coverage-guided fuzzing techniques. Similarly to the previ-

ous work on blind fuzzing, each individual component of
AFL was put under scrutiny. For example, AFLFAST [8]
and AFLGo [7] proposed scheduling mechanisms that are
better suited to some circumstances. Both, COLLAFL [16]
and InsTrim [35], enhanced the way in which coverage is
generated and stored to reduce the amount of memory needed.
Other publications improved the ways in which coverage
feedback is collected [23, 53, 55, 62]. To advance the ability
of fuzzers to overcome constraints that are hard to guess, a
wide array of techniques were proposed. Commonly, dif-
ferent forms of symbolic execution are used to solve these
challenging instances [9, 10]. In most of these cases, a re-
stricted version of symbolic execution (concolic execution)
is used [19–21, 26, 54, 60]. To further improve upon these
techniques, DigFuzz [67] provides a better scheduling for
inputs to the symbolic executor. Sometimes, instead of using
these heavy-weight primitives, more lightweight techniques
such as taint tracking [12, 17, 26, 50], patches [3, 13, 47, 60]
or instrumentation [3, 39] are used to overcome the same
hurdles.

While these improvements generally work very well for
binary file formats, many modern target programs work with
highly structured data. To target these programs, generational
fuzzing is typically used. In such scenarios, the user can
often provide a grammar. In most cases, fuzzers based on this
technique are blind fuzzers [14, 33, 45, 52, 63].

Recent projects such as AFLSMART [48], NAUTILUS [2]
and ZEST [46] combined the ideas of generational fuzzing
with coverage guidance. CODEALCHEMIST [28] even ven-
tures beyond syntactical correctness. To find novel bugs in
mature JavaScript interpreters, it tries to automatically craft
syntactically and semantically valid inputs by recombining
input fragments based on inferred types of variables. All of
these approaches require a good format specification and—in
some cases—good seed corpora. CODEALCHEMIST even
needs access to a specialized interpreter for the target lan-
guage to trace and infer type annotations. In contrast, our
approach has no such preconditions and is thus easily inte-
grable into most fuzzers.

Finally, to alleviate some of the disadvantages that the men-
tioned grammar-based strategies have, multiple approaches
were developed to automatically infer grammars for given
programs. GLADE [5] can systematically learn an approxima-
tion to the context-free grammars parsed by a program. To
learn the grammar, it needs an oracle that can answer whether
a given input is valid or not as well as a small set of valid
inputs. Similar techniques are used by PYGMALION [25] and
AUTOGRAM [34]. However, both techniques directly learn
from the target application without requiring a modified ver-
sion of the target. AUTOGRAM still needs a large set of inputs
to trace, while PYGMALION can infer grammars based solely
on the target application. Additionally, both approaches re-
quire complex analysis passes and even symbolic execution to
produce grammars. These techniques cannot easily be scaled

USENIX Association 28th USENIX Security Symposium 1999

to large binary applications. Finally, all three approaches are
computationally expensive.

8 Conclusion

We developed and demonstrated the first fully automatic algo-
rithm that integrates large-scale structural mutations into the
fuzzing process. In contrast to other approaches, we need no
additional modifications or assumptions about the target appli-
cation. We demonstrated the capabilities of our approach by
evaluating our implementation called GRIMOIRE against var-
ious state-of-the-art coverage-guided fuzzers. Our evaluation
shows that we outperform other coverage-guided fuzzers both
in terms of coverage and the number of bugs found. From this
observation, we conclude that it is possible to significantly
improve the fuzzing process in the absence of program input
specifications. Furthermore, we conclude that even when a
program input specification is available, our approach is still
useful when it is combined with a generational fuzzer.

Acknowledgements

We would like to thank our shepherd Deian Stefan and the
anonymous reviewers for their valuable comments and sug-
gestions. Furthermore, we would like to thank Moritz Contag,
Thorsten Eisenhofer, Joel Frank, Philipp Görz and Maxim-
ilian Golla for their valuable feedback. This work was sup-
ported by the German Research Foundation (DFG) within
the framework of the Excellence Strategy of the Federal Gov-
ernment and the States - EXC 2092 CASA. In addition, this
project has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under grant
agreement No 786669 (ReAct). This paper reflects only the
authors’ view. The Research Executive Agency is not re-
sponsible for any use that may be made of the information it
contains.

References
[1] APPLE INC. JavaScriptCore. https://github.com/WebKit/webkit/

tree/master/Source/JavaScriptCore.

[2] ASCHERMANN, C., FRASSETTO, T., HOLZ, T., JAUERNIG, P.,
SADEGHI, A.-R., AND TEUCHERT, D. Nautilus: Fishing for deep
bugs with grammars. In Symposium on Network and Distributed System
Security (NDSS) (2019).

[3] ASCHERMANN, C., SCHUMILO, S., BLAZYTKO, T., GAWLIK, R.,
AND HOLZ, T. REDQUEEN: Fuzzing with input-to-state correspon-
dence. In Symposium on Network and Distributed System Security
(NDSS) (2019).

[4] BASTANI, O., SHARMA, R., AIKEN, A., AND LIANG, P. Synthe-
sizing program input grammars. In ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI) (2017).

[5] BASTANI, O., SHARMA, R., AIKEN, A., AND LIANG, P. Synthe-
sizing program input grammars. In ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI) (2017).

[6] BELLARD, F. TCC: Tiny C compiler. https://bellard.org/tcc/.

[7] BÖHME, M., PHAM, V.-T., NGUYEN, M.-D., AND ROYCHOUDHURY,
A. Directed greybox fuzzing. In ACM Conference on Computer and
Communications Security (CCS) (2017).

[8] BÖHME, M., PHAM, V.-T., AND ROYCHOUDHURY, A. Coverage-
based greybox fuzzing as Markov chain. In ACM Conference on
Computer and Communications Security (CCS) (2016).

[9] CADAR, C., DUNBAR, D., AND ENGLER, D. R. KLEE: Unassisted
and automatic generation of high-coverage tests for complex systems
programs. In Symposium on Operating Systems Design and Implemen-
tation (OSDI) (2008).

[10] CHA, S. K., AVGERINOS, T., REBERT, A., AND BRUMLEY, D. Un-
leashing Mayhem on binary code. In IEEE Symposium on Security and
Privacy (2012).

[11] CHA, S. K., WOO, M., AND BRUMLEY, D. Program-adaptive muta-
tional fuzzing. In IEEE Symposium on Security and Privacy (2015).

[12] CHEN, P., AND CHEN, H. Angora: Efficient fuzzing by principled
search. In IEEE Symposium on Security and Privacy (2018).

[13] DREWRY, W., AND ORMANDY, T. Flayer: Exposing application
internals. In Proceedings of the first USENIX workshop on Offensive
Technologies (2007), USENIX Association.

[14] EDDINGTON, M. Peach fuzzer: Discover unknown vulnerabilities.
https://www.peach.tech/.

[15] FREE SOFTWARE FOUNDATION. GNU Bison. https://
www.gnu.org/software/bison/.

[16] GAN, S., ZHANG, C., QIN, X., TU, X., LI, K., PEI, Z., AND CHEN,
Z. CollAFL: Path sensitive fuzzing. In IEEE Symposium on Security
and Privacy (2018).

[17] GANESH, V., LEEK, T., AND RINARD, M. Taint-based directed white-
box fuzzing. In International Conference on Software Engineering
(ICSE) (2009).

[18] GNU PROJECT. GCC, the GNU compiler collection. https:
//gcc.gnu.org/.

[19] GODEFROID, P., KIEZUN, A., AND LEVIN, M. Y. Grammar-based
whitebox fuzzing. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI) (2008).

[20] GODEFROID, P., KLARLUND, N., AND SEN, K. DART: Directed auto-
mated random testing. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI) (2005).

[21] GODEFROID, P., LEVIN, M. Y., MOLNAR, D. A., ET AL. Automated
whitebox fuzz testing. In Symposium on Network and Distributed
System Security (NDSS) (2008).

[22] GODEFROID, P., PELEG, H., AND SINGH, R. Learn&fuzz: Machine
learning for input fuzzing. In Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering (2017),
pp. 50–59.

[23] GOODMAN, P. Shin GRR: Make fuzzing fast again.
https://blog.trailofbits.com/2016/11/02/shin-grr-make-
fuzzing-fast-again/.

[24] GOOGLE LLC. V8. https://v8.dev/.

[25] GOPINATH, R., MATHIS, B., HÖSCHELE, M., KAMPMANN, A., AND
ZELLER, A. Sample-free learning of input grammars for comprehen-
sive software fuzzing. arXiv preprint arXiv:1810.08289 (2018).

[26] HALLER, I., SLOWINSKA, A., NEUGSCHWANDTNER, M., AND BOS,
H. Dowsing for overflows: A guided fuzzer to find buffer boundary
violations. In USENIX Security Symposium (2013).

[27] HAN, H., AND CHA, S. K. IMF: Inferred model-based fuzzer. In
ACM Conference on Computer and Communications Security (CCS)
(2017).

2000 28th USENIX Security Symposium USENIX Association

https://github.com/WebKit/webkit/tree/master/Source/JavaScriptCore
https://github.com/WebKit/webkit/tree/master/Source/JavaScriptCore
https://bellard.org/tcc/
https://www.peach.tech/
https://www.gnu.org/software/bison/
https://www.gnu.org/software/bison/
https://gcc.gnu.org/
https://gcc.gnu.org/
https://blog.trailofbits.com/2016/11/02/shin-grr-make-fuzzing-fast-again/
https://blog.trailofbits.com/2016/11/02/shin-grr-make-fuzzing-fast-again/

[28] HAN, H., OH, D., AND CHA, S. K. CodeAlchemist: Semantics-
aware code generation to find vulnerabilities in JavaScript engines.
In Symposium on Network and Distributed System Security (NDSS)
(2019).

[29] HELIN, A. A general-purpose fuzzer. https://github.com/aoh/
radamsa.

[30] HEX-RAYS. IDA pro. https://www.hex-rays.com/products/ida/.

[31] HIPP, D. R. SQLite. https://www.sqlite.org/index.html.

[32] HOCEVAR, S. zzuf. https://github.com/samhocevar/zzuf.

[33] HOLLER, C., HERZIG, K., AND ZELLER, A. Fuzzing with code
fragments. In USENIX Security Symposium (2012).

[34] HÖSCHELE, M., AND ZELLER, A. Mining input grammars from
dynamic taints. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering (2016).

[35] HSU, C.-C., WU, C.-Y., HSIAO, H.-C., AND HUANG, S.-K. IN-
STRIM: Lightweight instrumentation for coverage-guided fuzzing. In
Symposium on Network and Distributed System Security (NDSS), Work-
shop on Binary Analysis Research (2018).

[36] IERUSALIMSCHY, R., CELES, W., AND DE FIGUEIREDO, L. H. Lua.
https://www.lua.org/.

[37] JOHNSON, S. Yacc: Yet another compiler-compiler. http://
dinosaur.compilertools.net/yacc/.

[38] JONES, E., OLIPHANT, T., AND PETERSON, P. Scipy: Open source
scientific tools for Python. http://www.scipy.org/, 2001–.

[39] LI, Y., CHEN, B., CHANDRAMOHAN, M., LIN, S.-W., LIU, Y., AND
TIU, A. Steelix: Program-state based binary fuzzing. In Joint Meeting
on Foundations of Software Engineering (2017).

[40] LLVM PROJECT. Clang: a C language family frontend for LLVM.
https://clang.llvm.org/.

[41] MATSUMOTO, Y. mruby. http://mruby.org/.

[42] MICROSOFT. ChakraCore. https://github.com/Microsoft/
ChakraCore.

[43] MOZILLA FOUNDATION / MOZILLA CORPORATION. Spider-
Monkey. https://developer.mozilla.org/en-US/docs/Mozilla/
Projects/SpiderMonkey.

[44] NIEMETZ, A., PREINER, M., AND BIERE, A. Boolector 2.0 system
description. Journal on Satisfiability, Boolean Modeling and Computa-
tion 9 (2015), 53–58.

[45] OPENRCE. Sulley: A pure-python fully automated and unattended
fuzzing framework. https://github.com/OpenRCE/sulley.

[46] PADHYE, R., LEMIEUX, C., SEN, K., PAPADAKIS, M., AND TRAON,
Y. L. Zest: Validity fuzzing and parametric generators for effective
random testing. arXiv preprint arXiv:1812.00078 (2018).

[47] PENG, H., SHOSHITAISHVILI, Y., AND PAYER, M. T-Fuzz: fuzzing
by program transformation. In IEEE Symposium on Security and
Privacy (2018).

[48] PHAM, V.-T., BÖHME, M., SANTOSA, A. E., CĂCIULESCU, A. R.,
AND ROYCHOUDHURY, A. Smart greybox fuzzing, 2018.

[49] PYTHON SOFTWARE FOUNDATION. Python. https://
www.python.org/.

[50] RAWAT, S., JAIN, V., KUMAR, A., COJOCAR, L., GIUFFRIDA, C.,
AND BOS, H. VUzzer: Application-aware evolutionary fuzzing. In
Symposium on Network and Distributed System Security (NDSS) (Feb.
2017).

[51] REBERT, A., CHA, S. K., AVGERINOS, T., FOOTE, J. M., WARREN,
D., GRIECO, G., AND BRUMLEY, D. Optimizing seed selection for
fuzzing. In USENIX Security Symposium (2014).

[52] RUDERMAN, J. Introducing jsfunfuzz. http://www.squarefree.com/
2007/08/02/introducing-jsfunfuzz (2007).

[53] SCHUMILO, S., ASCHERMANN, C., GAWLIK, R., SCHINZEL, S.,
AND HOLZ, T. kAFL: Hardware-assisted feedback fuzzing for OS
kernels. In USENIX Security Symposium (2017).

[54] STEPHENS, N., GROSEN, J., SALLS, C., DUTCHER, A., WANG, R.,
CORBETTA, J., SHOSHITAISHVILI, Y., KRUEGEL, C., AND VIGNA,
G. Driller: Augmenting fuzzing through selective symbolic execution.
In Symposium on Network and Distributed System Security (NDSS)
(2016).

[55] SWIECKI, R. Security oriented fuzzer with powerful analysis options.
https://github.com/google/honggfuzz.

[56] THE NASM DEVELOPMENT TEAM. NASM. https://www.nasm.us/.

[57] THE PHP GROUP. PHP. http://php.net/.

[58] VEGGALAM, S., RAWAT, S., HALLER, I., AND BOS, H. IFuzzer:
An evolutionary interpreter fuzzer using genetic programming. In
European Symposium on Research in Computer Security (ESORICS)
(2016), pp. 581–601.

[59] VEILLARD, DANIEL. The XML C parser and toolkit of Gnome. http:
//xmlsoft.org/.

[60] WANG, T., WEI, T., GU, G., AND ZOU, W. TaintScope: A checksum-
aware directed fuzzing tool for automatic software vulnerability detec-
tion. In IEEE Symposium on Security and Privacy (2010).

[61] WOO, M., CHA, S. K., GOTTLIEB, S., AND BRUMLEY, D. Schedul-
ing black-box mutational fuzzing. In ACM Conference on Computer
and Communications Security (CCS) (2013).

[62] XU, W., KASHYAP, S., MIN, C., AND KIM, T. Designing new oper-
ating primitives to improve fuzzing performance. In ACM Conference
on Computer and Communications Security (CCS) (2017).

[63] YANG, X., CHEN, Y., EIDE, E., AND REGEHR, J. Finding and
understanding bugs in C compilers. In ACM SIGPLAN Notices (6
2011), vol. 46, ACM, pp. 283–294.

[64] YUN, I., LEE, S., XU, M., JANG, Y., AND KIM, T. QSYM: A
practical concolic execution engine tailored for hybrid fuzzing. In
USENIX Security Symposium (2018), pp. 745–761.

[65] ZALEWSKI, M. american fuzzy lop. http://lcamtuf.coredump.cx/
afl/.

[66] ZALEWSKI, M. Technical “whitepaper” for afl-fuzz. http://
lcamtuf.coredump.cx/afl/technical_details.txt.

[67] ZHAO, L., DUAN, Y., YIN, H., AND XUAN, J. Send hardest problems
my way: Probabilistic path prioritization for hybrid fuzzing. In Sympo-
sium on Network and Distributed System Security (NDSS) (2019).

USENIX Association 28th USENIX Security Symposium 2001

https://github.com/aoh/radamsa
https://github.com/aoh/radamsa
https://www.hex-rays.com/products/ida/
https://www.sqlite.org/index.html
https://github.com/samhocevar/zzuf
https://www.lua.org/
http://dinosaur.compilertools.net/yacc/
http://dinosaur.compilertools.net/yacc/
http://www.scipy.org/
https://clang.llvm.org/
http://mruby.org/
https://github.com/Microsoft/ChakraCore
https://github.com/Microsoft/ChakraCore
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://github.com/OpenRCE/sulley
https://www.python.org/
https://www.python.org/
http://www.squarefree.com/2007/08/02/introducing-jsfunfuzz
http://www.squarefree.com/2007/08/02/introducing-jsfunfuzz
https://github.com/google/honggfuzz
https://www.nasm.us/
http://php.net/
http://xmlsoft.org/
http://xmlsoft.org/
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt

A Statistics on Basic Block Coverage

Table 7: Statistics on basic block coverage for tested fuzzers. In the column “Best Coverage”, we provide the highest number of basic blocks a run found and the
percentage relative to the number of basic blocks obtained from IDA Pro [30].

Target Best Coverage (#BBS / %) Fuzzer Mean (%) Median (%) Median (#BBs) Std
Deviation

Skewness Kurtosis

mruby 20258 / 70.5%

GRIMOIRE 66.1% 66.6% 19137 4.55 −0.54 −0.76
AFL 53.7% 53.4% 15355 4.28 0.14 −0.27
ANGORA 53.3% 53.8% 15452 4.87 0.17 −0.96
QSYM 49.2% 49.0% 14084 2.20 0.33 0.95
REDQUEEN 45.9% 46.4% 13339 4.64 −0.98 0.05

TCC 9211 / 77.6%

GRIMOIRE 71.8% 72.9% 8647 5.71 −1.89 3.68
AFL 11.8% 11.8% 1397 3.80 1.27 1.14
ANGORA 31.0% 30.3% 3600 6.51 1.01 0.06
QSYM 11.9% 11.8% 1403 3.26 1.52 2.59
REDQUEEN 56.7% 56.4% 6695 8.13 0.03 −1.93

PHP 46805 / 27.9%

GRIMOIRE 20.8% 21.2% 35606 20.26 0.12 −1.38
AFL 13.2% 13.3% 22323 3.64 −0.09 −0.96
ANGORA 12.1% 12.2% 20501 6.39 −0.37 −0.58
QSYM 12.7% 12.7% 21276 2.60 0.22 −1.11
REDQUEEN 14.5% 14.5% 24367 1.87 0.37 −0.83

Boolector 23207 / 33.1%

GRIMOIRE 25.2% 24.9% 17461 16.77 0.51 −0.65
AFL 14.0% 14.0% 9790 7.46 0.30 −0.57
ANGORA 13.2% 12.8% 8986 9.20 0.79 −0.17
QSYM 13.7% 14.0% 9782 6.94 −0.39 −1.24
REDQUEEN 13.3% 13.3% 9305 9.63 0.21 −1.23

Lua 6205 / 64.1%

GRIMOIRE 54.4% 55.2% 5339 6.47 0.20 −0.73
AFL 51.9% 51.9% 5016 1.61 0.84 −0.15
ANGORA 59.9% 60.1% 5817 2.96 0.05 −1.39
QSYM 54.8% 52.6% 5091 9.52 1.07 −0.65
REDQUEEN 44.5% 44.4% 4299 2.30 −0.30 −1.19

libxml 10437 / 13.2%

GRIMOIRE 11.7% 11.6% 9190 5.52 0.98 0.02
AFL 11.1% 11.2% 8881 3.40 −0.39 −0.92
ANGORA 0.0% 0.0% 0 nan 0.00 −3.00
QSYM 10.8% 10.8% 8598 2.36 0.95 1.45
REDQUEEN 10.1% 10.1% 7979 3.72 0.72 −0.25

SQLite 22031 / 57.1%

GRIMOIRE 48.6% 46.8% 18064 9.25 0.80 −0.72
AFL 34.6% 33.9% 13072 10.02 0.60 −0.34
ANGORA 33.1% 34.2% 13218 12.12 −0.30 −1.05
QSYM 33.4% 33.6% 12988 10.91 −0.33 −0.18
REDQUEEN 32.3% 32.6% 12599 4.77 0.18 −0.21

NASM 10015 / 51.1%

GRIMOIRE 47.7% 48.4% 9483 7.58 −2.58 5.67
AFL 43.2% 43.0% 8442 1.68 1.07 1.09
ANGORA 46.9% 47.0% 9211 5.27 0.06 −1.19
QSYM 42.1% 42.6% 8357 4.72 −1.49 2.40
REDQUEEN 44.9% 45.5% 8928 4.21 −0.20 −0.89

2002 28th USENIX Security Symposium USENIX Association

	Introduction
	Challenges in Fuzzing Structured Languages
	Blind Fuzzing
	Coverage-guided Fuzzing
	Hybrid Fuzzing
	Coverage-guided Grammar Fuzzing
	Grammar Inference
	Shortcomings of Existing Approaches

	Design
	Input Generalization
	Input Mutation
	Input Extension
	Recursive Replacement
	String Replacement

	Implementation
	Evaluation
	Measurement Setup
	State-of-the-Art Bug Finding Tools
	Grammar-based Fuzzers
	Grammar Inference Techniques
	Mutations Statistic
	Real-World Bugs

	Discussion
	Related Work
	Conclusion
	Statistics on Basic Block Coverage

